Transonic shocks and free boundary problems for the full Euler equations in infinite nozzles
نویسندگان
چکیده
We establish the existence, stability, and asymptotic behavior of transonic flows with a transonic shock for the steady, full Euler equations in two-dimensional infinite nozzles of slowly varying cross-sections. Given a smooth incoming flow that is close to a uniform supersonic state at the entrance, we prove that there exists a transonic flow whose infinite downstream smooth subsonic region is separated by a smooth transonic shock from the upstream supersonic flow. The solution is unique within the class of transonic solutions that are close to the background solution. This problem is approached by a free boundary problem in which the transonic shock is formulated as a free boundary. An iteration scheme for the free boundary is developed and its fixed point is shown to exist, which is a solution of the free boundary problem, by combining some delicate estimates for a second-order nonlinear elliptic equation on a Lipschitz domain. © 2007 Elsevier Masson SAS. All rights reserved. Résumé Nous établissons l’existence, la stabilité, et le comportement asymptotique des écoulements transoniques avec un choc transonique pour les équations d’Euler complètes et indépendantes du temps dans des tuyères bidimensionelles, infinies et ayant des coupes transversales qui varient lentement. Etant donné un écoulement entrant régulier qui est proche d’un état supersonique uniforme à l’entrée, nous démontrons que—dans la direction de l’écoulement—il existe un écoulement transonique, dont la région (infinie) subsonique devant le choc est séparée de la région supersonique derrière le choc, par un choc transonique à travers une courbe régulière. La solution est unique dans la classe des solutions transoniques qui sont proches de la solution de base. Ce problème est abordé par un problème à frontière libre, dans lequel le choc est formulé comme frontière libre. Nous développons un schèma d’itération pour la frontière libre et, en combinant quelques estimations délicates pour une équation elliptique non linéaire de deuxième ordre sur un domaine lipschitzien, nous démontrons qu’il existe un point fixe solution du problème à frontière libre. © 2007 Elsevier Masson SAS. All rights reserved.
منابع مشابه
A Remark on Determination of Transonic Shocks in Divergent Nozzles for Steady Compressible Euler Flows
In this paper we construct a class of transonic shock in a divergent nozzle which is a part of an angular sector (for two-dimensional case) or a cone (for three-dimensional case) which does not contain the vertex. The state of the compressible flow depends only on the distance from the vertex of the angular sector or the cone. It is supersonic at the entrance, while for appropriately given larg...
متن کاملTransonic Shocks in Multidimensional Divergent Nozzles
We establish existence, uniqueness and stability of transonic shocks for steady compressible non-isentropic potential flow system in a multidimensional divergent nozzle with an arbitrary smooth cross-section, for a prescribed exit pressure. The proof is based on solving a free boundary problem for a system of partial differential equations consisting of an elliptic equation and a transport equa...
متن کاملMultidimensional Transonic Shocks and Free Boundary Problems for Nonlinear Equations of Mixed Type
We are concerned with the existence and stability of multidimensional transonic shocks for the Euler equations for steady potential compressible fluids. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for the velocity, can be written as the following second-order nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential φ : Ω ⊂ R → R: ...
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملMultidimensional Transonic Shocks and Free Boundary Problems for Nonlinear Equations of Mixed Type Gui-qiang Chen and Mikhail Feldman
We are concerned with the existence and stability of multidimensional transonic shocks for the Euler equations for steady potential compressible fluids. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for the velocity, can be written as the following second-order nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential φ : Ω ⊂ R → R: ...
متن کامل